979 research outputs found

    Rationale and safety assessment of a novel intravaginal drug-delivery system with sustained DL-lactic acid release, intended for long-term protection of the vaginal microbiome

    Get PDF
    Bacterial vaginosis is a prevalent state of dysbiosis of the vaginal microbiota with wide-ranging impact on human reproductive health. Based on recent insights in community ecology of the vaginal microbiome, we hypothesize that sustained vaginal DL-lactic acid enrichment will enhance the recruitment of lactobacilli, while counteracting bacterial vaginosis-associated bacteria. We therefore aimed to develop an intravaginal device that would be easy to insert and remove, while providing sustained DL-lactic acid release into the vaginal lumen. The final prototype selected is a vaginal ring matrix system consisting of a mixture of ethylene vinyl acetate and methacrylic acid -methyl methacrylate copolymer loaded with 150 mg DL -lactic acid with an UD-lactic acid ratio of 1:1. Preclinical safety assessment was performed by use of the Slug Mucosal Irritation test, a non-vertebrate assay to evaluate vaginal mucosal irritation, which revealed no irritation. Clinical safety was evaluated in a phase I trial with six healthy nulliparous premenopausal volunteering women, with the investigational drug left in place for 7 days. Colposcopic monitoring according to the WHO/CONRAD guidelines for the evaluation of vaginal products, revealed no visible cervicovaginal mucosal changes. No adverse events related to the investigational product occurred. Total release from the intravaginal ring over 7 days was estimated through high performance liquid chromatography at 37.1 (standard deviation 0.9) mg DL -lactic acid. Semisolid lactic acid formulations have been studied to a limited extent in the past and typically consist of a large volume of excipients and very high doses of lactic acid, which is of major concern to mucosal safety. We have documented the feasability of enriching the vaginal environment with pure DL -lactic acid with a prototype intravaginal ring. Though the efficacy of this platform remains to be established possibly requiring further development, this approach may offer a novel avenue to modulate and protect the vaginal microbiota

    Lubricant sensitivity in function of paddle movement in the forced feeder of a high-speed tablet press

    Get PDF
    Context: The negative impact of magnesium stearate (MgSt) on the hardness of tablets is a well-known phenomenon, but the influence of paddle movement in the forced feeder on the lubricant effect during tablet compression is often neglected. Objective: The purpose of this research was to investigate the influence of paddle speed in the forced feeder on tablet tensile strength (TS).Materials and methods: Mixtures of microcrystalline cellulose (MCC) and MgSt (0.5%) were blended using different methods (low & high shear). After blending, the formulations were compressed into tablets. All parameters of the tableting cycle were kept constant except the speed of the paddles in the forced feeder. Results and discussion: The blending technique affected the sensitivity of the formulation to the paddle speed. The TS of pure MCC tablets did not change in function of paddle speed, while tablets prepared by low shear mixing became softer at higher paddle speed. The TS of tablets manufactured using the high-shear mixed blend was low and did not vary in function of paddle speed, suggesting that overlubrication already occurred during the initial blending step. Furthermore, analysis of the machine parameters allowed evaluation of the influence of the paddles on the flowability, initial packing, and compactability of the powder mixtures. Conclusion: The results elucidated that during manufacturing of tablets using MgSt-containing blends care should not only be taken during the blending step prior to tableting, but also during the tableting process itself, as paddle speed can affect tablet TS, a critical quality attribute

    Reduction of tablet weight variability by optimizing paddle speed in the forced feeder of a high-speed rotary tablet press

    Get PDF
    Context: Tableting is a complex process due to the large number of process parameters that can be varied. Knowledge and understanding of the influence of these parameters on the final product quality is of great importance for the industry, allowing economic efficiency and parametric release. Objective: The aim of this study was to investigate the influence of paddle speeds and fill depth at different tableting speeds on the weight and weight variability of tablets. Materials and methods: Two excipients possessing different flow behavior, microcrystalline cellulose (MCC) and dibasic calcium phosphate dihydrate (DCP), were selected as model powders. Tablets were manufactured via a high-speed rotary tablet press using design of experiments (DoE). During each experiment also the volume of powder in the forced feeder was measured. Results and discussion: Analysis of the DoE revealed that paddle speeds are of minor importance for tablet weight but significantly affect volume of powder inside the feeder in case of powders with excellent flowability (DCP). The opposite effect of paddle speed was observed for fairly flowing powders (MCC). Tableting speed played a role in weight and weight variability, whereas changing fill depth exclusively influenced tablet weight. Conclusion: The DoE approach allowed predicting the optimum combination of process parameters leading to minimum tablet weight variability. Monte Carlo simulations allowed assessing the probability to exceed the acceptable response limits if factor settings were varied around their optimum. This multi-dimensional combination and interaction of input variables leading to response criteria with acceptable probability reflected the design space

    Process monitoring and visualization solutions for hot-melt extrusion : a review

    Get PDF
    Objectives: Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Key Findings: Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. Summary: This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME

    The adjuvant effect of Gantrez®AN nanoparticles on oral vaccination of pigs and mice with F4 fimbriae is strongly influenced by polymer degradation

    Get PDF
    We analysed the adjuvant effect of Gantrez nanoparticles NP on oral immunisation of pigs and mice with F4 fimbriae. The animals were vaccinated with F4, F4 encapsulated in Gantrez NP, called gF4 NP, or F4 + empty Gantrez NP, called F4 + gNP, and intragastrically infected with F4+ ETEC. The adjuvant effect of Gantrez®AN nanoparticles on oral vaccination of pigs and mice with F4 fimbriae is strongly influenced by polymer degradation

    pH-independent immediate release polymethacrylate formulations : an observational study

    Get PDF
    Using Eudragit (R) E PO (EudrE) as a polymethacrylate carrier, the aim of the study was to develop a pH-independent dosage form containing ibuprofen (IBP) as an active compound via chemical modification of the polymer (i.e. quaternization of amine function) or via the addition of dicarboxylic acids (succinic, glutaric and adipic acid) to create a pH micro-environment during dissolution. Biconvex tablets (diameter: 10mm; height: 5mm) were produced via hot melt extrusion and injection molding. In vitro dissolution experiments revealed that a minimum of 25% of quaternization was sufficient to partially (up to pH 5) eliminate the pH-dependent effect of the EudrE/IBP formulation. The addition of dicarboxylic acids did not alter IBP release in a pH 1 and 3 medium as the dimethyl amino groups of EudrE are already fully protonated, while in a pH 5 solvent IBP release was significantly improved (cf. from 0% to 92% release after 1h dissolution experiments upon the addition of 20wt.% succinic acid). Hence, both approaches resulted in a pH-independent (up to pH 5) immediate release formulation. However, the presence of a positively charged polymer induced stability issues (recrystallization of API) and the formulations containing dicarboxylic acids were classified as mechanically unstable. Hence, further research is needed to obtain a pH-independent immediate release formulation while using EudrE as a polmethacrylate carrier
    • …
    corecore